A New Measure for the Accuracy of a Bayesian Network
نویسندگان
چکیده
A Bayesian Network is a construct that is used to model a given joint probability distribution. In order to assess the quality of an inference, or to choose between competing networks modelling the same data, we need methods to estimate the accuracy of a Bayesian network. Although the accuracy of a Bayesian network can be easily defined in theory, it is rarely possible to compute it in practice for real-world applications due to the size of the space representing the variables. Instead, alternative characteristics of a Bayesian network, which relate to and reflect the accuracy, are used. A popular formalism that adopts such methods is the Minimum Description Length (MDL). It models the accuracy of a Bayesian network as the probability of the Bayesian network given the data set that it models. However in the context of Bayesian Networks, the MDL formalism is flawed, exhibiting several shortcomings. In its place, we propose a new framework for Bayesian Networks. We specify a measure, which models the accuracy of a Bayesian network as the accuracy of the conditional independencies implied by its structure. Experiments have been conducted, using real-world data sets, to compare MDL and the new measure. The experimental results demonstrate that the new measure is much better correlated to the real accuracy than the MDL measure. These results support the theoretical claims, and confirm the significance of the proposed framework.
منابع مشابه
طراحی یک سیستم تصمیم گیرنده جهت درمان پوسیدگی دندان در کودکان
Introduction: Dentists have to choose a precise treatment plan based on the prevailing sign symptoms gathered from patients. However; in most of cases, the symptoms are complicate which makes the lack of confidence for the dentist to find an accurate treatment plan. This study introduces a new diagnosis system that helps the dentists and students to choose an accurate course of treatment ...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملLearning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Model for Tax Evasion Forcasting based on ID3 Algorithm and Bayesian Network
Nowadays, knowledge is a valuable and strategic source as well as an asset for evaluation and forecasting. Presenting these strategies in discovering corporate tax evasion has become an important topic today and various solutions have been proposed. In the past, various approaches to identify tax evasion and the like have been presented, but these methods have not been very accurate and the ove...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کامل